ELECTRICAL FORMULAS FOR POWER CABLE

Power Cable Capacitance (C) Formula
Single Conductor Shielded Cable
        C = 0.024113 x e/ [log (d2/d1)]   microfarad/ kilometer
where:
e = dielectric constant for XLPE = 2.3, PVC = 5.0-7.0
d2 = diameter under insulation
d1 = diameter over the insulation

Power Cable Insulation Resistance (IR) Formula
According to ICEA Specification
IR @ 15.6 degrees C = K log (d2/d1)    Megaohm - 1000ft

According to JIS Specification
IR @ 20.0 degrees C = 3.665 x 10^-12 x p x log (d2/d1)    Megaohm - km

where:
d2 = diameter under insulation
d1 = diameter over the insulation
K = constant (XLPE = 20,000; PVC = 500)
p = volume density (ohm-cm) ; XLPE = 2.5 x 10^15, PVC = 1 x 10^13

Power Cable Inductance (L) Formula
Multiple conductor cable or single conductor cable arranged in parallel and three single conductor arranged in triangular
          L = 0.46 log (S/d) + 0.19    mH/km
where: 
d = diameter of conductor
S = distance between conductor

Power Cable Charging Current (Ic) Formula
          Ic = 2 x pi x fC x v/ 1.73    Amp/km
where: 
C = capacitance (F/km)
V = rated line to line voltage (Volt)
f = frequency (Hz)

Power Cable Potential Gradient Formula
         E = (v/1.73)/ X ln (d2/d1)    kV/mm
where:
X = distance from center of the conductor (mm)
V = rated line to line voltage
d2 = diameter under insulation
d1 = diameter over the insulation

Comments

Anonymous said…
Il semble que vous soyez un expert dans ce domaine, vos remarques sont tres interessantes, merci.

- Daniel

Popular posts from this blog

POLYMERIC INSULATON OF POWER CABLES BASICS AND TUTORIALS

ENTRY LEVEL and SENIOR ENGINEERING JOBS

SURGE ARRESTER ENERGY HANDLING CAPABILITY FOR TRANSMISSION AND DISTRIBUTION LINES APPLICATION TUTORIALS

free counters